
Relationships and their 
representation in a class 
diagram. Inheritance of 

class attributes and 
operations.



Agenda

Introduction

Building confidence

Engaging the audience

Visual aids

Final tips & takeaways



Class diagram

A class diagram in the Unified Modeling Language 
(UML) is a type of static structure diagram that describes 
the structure of a system by showing the system’s:

• classes, 

• their attributes, 

• operations (or methods), 

• and the relationships among objects.



Class diagrams offer several benefits for any 
organization. Use UML class diagrams to:

• Illustrate data models for information systems, no matter how simple or 
complex.

• Better understand the general overview of the schematics of an 
application.

• Visually express any specific needs of a system and disseminate that 
information throughout the business.

• Create detailed charts that highlight any specific code needed to be 
programmed and implemented to the described structure.

• Provide an implementation-independent description of types used in a 
system that are later passed between its components.



Class

• A Class is a blueprint for an object. Objects and classes go hand in 
hand. We can't talk about one without talking about the other. 
And the entire point of Object-Oriented Design is not about 
objects, it's about classes, because we use classes to create 
objects. So, a class describes what an object will be, but it isn't the 
object itself. 

• In fact, classes describe the type of objects, while objects are 
usable instances of classes. Each Object was built from the same 
set of blueprints and therefore contains the same components 
(properties and methods). The standard meaning is that an object 
is an instance of a class and object - Objects have states and 
behaviors. 



Example



Basic components of a class diagram

• Upper section: Contains the name of the class. This section is always 
required, whether you are talking about the classifier or an object.

• Middle section: Contains the attributes of the class. Use this section to 
describe the qualities of the class. This is only required when describing a 
specific instance of a class.

• Bottom section: Includes class operations (methods). Displayed in list 
format, each operation takes up its own line. The operations describe 
how a class interacts with data.



Class Operations (Methods):

• The return type of a method is shown after the colon at the end of the 
method signature.

• The return type of method parameters are shown after the colon 
following the parameter name. Operations map onto class methods in 
code 



Class Visibility 

• + denotes public attributes or operations 

• - denotes private attributes or operations 

• # denotes protected attributes or operations 



Relationships 
between classes 



Associations

• An association represents a bi-directional relationship between two 
classes. It indicates that instances of one class are connected to instances 
of another class. 

• They are represented by a solid line between classes. Associations are 
typically named using a verb or verb phrase which reflects the real-world 
problem domain. Associations are always assumed to be bi-directional; 
this means that both classes are aware of each other and their 
relationship, unless you qualify the association as some other type. 



Uni-directional association

• In a uni-directional association, two classes are related, but only one class 
knows that the relationship exists. 



Cardinality

Cardinality is expressed in 
terms of:

• one to one

• one to many

• many to many



Inheritance

• Refers to the ability of one class (child class) to inherit the identical 
functionality of another class (super class), and then add new functionality 
of its own. (In a non-technical sense, imagine that I inherited my mother's 
general musical abilities, but in my family I'm the only one who plays 
electric guitar.) To model inheritance on a class diagram, a solid line is 
drawn from the child class (the class inheriting the behavior) with a 
closed, unfilled arrowhead (or triangle) pointing to the super class. 



Aggregation

• It represents a "part of" relationship.

• Class2 is part of Class1.

• Many instances (denoted by the *) of Class2 can be associated with 
Class1.

• Objects of Class1 and Class2 have separate lifetimes.

• Aggregation is represented by a diamond shape on the side of the whole 
class. In this kind of relationship, the child class can exist independently of 
its parent class.



Composition

A special type of aggregation where parts are destroyed when the whole is 
destroyed.

• Objects of Class2 live and die with Class1.

• Class2 cannot stand by itself.

The relationship is displayed as a solid line with a filled diamond at the 
association end, which is connected to the class that represents the whole 
or composite.



Dependency

An object of one class might use an object of another class in the code of a 
method. If the object is not stored in any field, then this is modeled as a 
dependency relationship. 

• A special type of association. 

• Exists between two classes if changes to the definition of one may cause 
changes to the other (but not the other way around).

• Class1 depends on Class2



Realization

• Realization is a relationship between the blueprint class and the object 
containing its respective implementation level details. This object is said 
to realize the blueprint class. In other words, you can understand this as 
the relationship between the interface and the implementing class.



Thank you

Brita Tamm

502-555-0152

brita@firstupconsultants.com

www.firstupconsultants.com


	Slide 1: Relationships and their representation in a class diagram. Inheritance of class attributes and operations.
	Slide 2: Agenda
	Slide 3: Class diagram
	Slide 4: Class diagrams offer several benefits for any organization. Use UML class diagrams to:
	Slide 5: Class
	Slide 6
	Slide 7: Basic components of a class diagram
	Slide 8: Class Operations (Methods):
	Slide 9: Class Visibility 
	Slide 10: Relationships between classes 
	Slide 11: Associations
	Slide 12: Uni-directional association
	Slide 13: Cardinality
	Slide 14: Inheritance
	Slide 15: Aggregation
	Slide 16: Composition
	Slide 17: Dependency
	Slide 18: Realization
	Slide 19: Thank you

